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Abstract

For extended manned space missions, the radiation shielding de-

sign requires e_ficient and accurate cosmic-ray transport codes that

can handle the physics processes in detail. The Langley Research

Center galactic cosmic-ray transport code (HZETRN) is currently
under development for such design use. The cross sections for

the production of secondary nucleons in the existing HZETRN code

are energy dependent only for nucleon collisions. The approxima-

tion of energy-independent, heavy-ion fragmentation cross section is

now removed by implementing a mathematically simplified energy-

dependent stepping formalism for heavy ions. The cross section at

each computational grid is obtained by linear interpolation from a few
tabulated data to minimize computing time. Test runs were made for

galactic cosmic-ray transport through a liquid hydrogen shield and

a water shield at solar minimum. The results show no apprecia-

ble change in total fluxes or computing time compared with energy-

independent calculations. Differences in high LET (linear energy

transfer) spectra are noted, however, because of the large variation
in cross sections at the low-energy region. The high LET compo-

nents are significantly higher in the new code and have important

implications on biological risk estimates for heavy-ion exposure.

Introduction

As the space program proceeds into an era of extended manned space operations, the

shielding from galactic heavy ions becomes a problem of ever-increasing importance (ref. 1).

The high-energy heavy ions that originate in deep space undergo energy degradation and nuclear

fragmentation as they interact with the target nuclei. The nuclear fragmentation results in the

production of secondary and subsequent-generation reaction products that alter the elemental

and isotropic composition of the transported radiation fields. Accurate knowledge of nuclear
fragmentation cross section is needed to better estimate the altered flux and biological quantities

for shielding design. (See refs. 2 and 3.) It is also required that the transport calculation be

efficient and handle the physics processes in detail, such as energy-dependent cross sections.

A newly developed Langley Research Center galactic cosmic-ray transport code (HZETRN,

ref. 4) is a unique, deterministic code that can be used as an engineering tool for shielding design.

It is currently under constant improvement and refinement. Recently, the efficiency of the code
has been increased tenfold (ref. 5), but some other shortcomings listed in reference 2 remain to

be corrected. The major shortcomings of the codes are:

1. All secondary particles from HZE (high-energy heavy-ion) interactions are assumed to be
produced with a velocity equal to that of the incident particle; for neutrons produced in HZE

particle fragmentation, this assumption is conservative.

2. Meson contributions to the propagating radiation fields are neglected; the light-ion
contributions will be implemented in the immediate future.

3. Nucleus-nucleus cross sections are not fully energy dependent (but nucleon-nucleus cross
sections are already energy dependent).

4. Backward scattering, a first-order contribution in a three-dimensional effect, is not yet
included.



Item 3, with the assumptionof energy-independentfragmentationcrosssectionsfor the heavy
ions,is removedin the currentstudy.

In the followingsections,the developmentof agalacticcosmic-raytransportmethodthat al-
lowsall the transport parametersto be fully energydependentis presented.The secondary
production crosssectionfor baryonshasalreadybeentreated as energydependentin the
BRYNTRN (ref. 6) portion of the HZETRN code (refs.5 and 4); nonetheless,a formalism
is derivedfor energy-dependentheavy-ionfragmentationcrosssections.This formalismwill be
implementedinto theexistingHZETRNcode.Theseresultsarepresentedin thecontextof com-
paring the fully energy-dependentcalculationandthe previouslyassumedenergy-independent
fragmentationcrosssections.

Galactic Cosmic-Ray Transport Method

Whenmovingthroughextendedmatter,heavyionsloseenergyasaresultof interactionwith
atomicelectronsalongtheir trajectories.Theyoccasionallyinteractviolentlywith nucleiof the
matter andproduceion fragmentsthat moveforwardand low-energyfragmentsof the struck
target nucleus.The transportequationsfor the short-rangetarget fragmentscanbesolvedin
closedform in termsof collisiondensity (ref. 7). Hence,the projectilefragmenttransport is
the interestingproblem.In reference8, the projectileion fragmentsweretreatedasif they all
wentstraightahead.Thestraight-aheadapproximationis quite accuratefor thenear-isotropic,
cosmic-rayfluence(ref. 7).

With thestraight-aheadapproximationandthetargetsecondaryfragmentsneglected(refs.7
and8), the transportequationmaybewritten as

-_¢-vj S(E)+aj(E) Cj(x,E)= E fjk(E, Et)¢k(x,E') dE' (1)
k

where Cj (x, E) is the flux of ions of type j with atomic mass Aj and charge Zj at x moving
along the x-axis at energy E in units of MeV/amu, ffj is the corresponding macroscopic nuclear

absorption cross section, S(E) is the stopping power of the protons, fjk (E, E') is a differential

energy cross section for production of ion j in collision by ion k, and vj is the range scaling

parameter that is defined as

vj = Z_/Aj (2)

Utilizing the definitions

fo Er = dE'/S(E') (3)

Cj (x, r) = S(E) Cj (x, E)

and

]'jk (r,r') = S(E) fjk (E,E')

allows equation (1) to be rewritten as

[0 0 ]/7
k

(4)

(5)

(6)



whichmaybe rewritten(refs.9 and 10)as

Cj (x,r) = exp[-_j (r, x)] ¢3 (0, r + _jx)

f0_fff+_ exp[-_j(_,z)]_jk(_+.jz,_')¢k(x-z,r') e_' ez (7)
k

where the exponential is the integrating factor with

¢j (r,t) = aj (r + _jt') dt' (8)

Simple numerical procedures follow from equation (7). The first-order nature of equation (1)

allows Cj (x, r) to be taken as a boundary condition for propagation to larger values of x, so
equation (7) may be approximated as

¢_(x+ h,r) --exp[-_ (r,h)]Cj (x,r + _jh)

+ _ exp[-_ (r,z)]5* (_+ _, r') _k(x+ h- z _') ez e_' (9)
k

If h is sufficiently small that

aj (r') h << 1 (10)

then, according to perturbation theory (ref. 9),

Ck (x + h - z,r') _ exp [-_k (r',h - z)] Ck [x,r' + vk (h - z)] (11)

Equation (11) may be used to reduce the integral of equation (9), yielding

+Z exp[-_J(r,z)-_k(_',_-z)]5_(_+_Jz, r')
k

x Ck [x,r' + t_k (h- z)] dr' dz (12)

Currently, it is assumed that secondary ions j are produced in collision by ion k with the
velocity equal to that of the incident ion k for k > j and k > 4He. In the near future, elastic

and nonelastic collision spectra that were treated for baryons in detail in reference 6 will be

extended to c_-particles and light isotopes, so that the following approximation may be applied

only for j > 6Li. However, in the present text, the assumption is continued for Zj > 1 and
k > j that

_fjk (r, r') = ajk (r') 5 (r - r') (13)

Using equation (13), equation (12) now becomes

+ E dzexp[-_j(r,z)--_k(r',h--z)]ajk(r')¢k[x,r' +Uk(h--z)] (14)
k

3



wherer I = r + _jz. Equation (14) is further approximated as

ej (x + h,_)_ exp[-¢j (_,h)]Cj (x,_+ .jh)

+ _ dzexp[-_j (r,z) - _k(_,h - z)] _jk(r) _k [x,r + _ z + "k(h - z)]
k

_ exp[-_j(_)h] *5 (x,r +.jh)

+ E aJk(r) { exp[-aj(r) h] -exp[-ak(r)hl }k ok(_) oJ(_) Ck(x,_+ _jh)

+o [(_k--j)h] (15)

Equation (15) is the stepping formalism with energy-dependent cross sections for k > 4He. The

corresponding stepping formalism for nucleons has been discussed in detail in reference 6.

Results and Discussion

As an initial checkout in the implementation of equation (15) to the existing HZETRN

code, calculations have been made with water and liquid hydrogen as the target materials.
These two materials were chosen because there is more experimental fragmentation data with

proton beams at various energies than with any other ion. Hence, the energy dependence

of nuclear fragmentation from hydrogen targets is relatively well-known. Moreover, heavy-ion

fragmentation cross sections with hydrogen targets tend to show a large variation over the energy
range being considered. In the present work, Rudstam's semiempirical formula (ref. 11) of heavy-

ion fragmentation cross sections for a hydrogen target is used for convenience. Figures 1 and 2
display a few typical fragmentation cross sections with the hydrogen target (ajk in cm2/g) as

functions of energy for nickel and iron beams, respectively, with some extrapolation made in the

low energy. (1 cm2/g = 1.67 barn for the hydrogen target.) In the near future, modifications

to Rudstam's formalism by Silberberg, Tsao, and Shapiro (ref. 12) will be incorporated into the
data base. As for the oxygen target (or any target other than hydrogen), the cross sections are

generated by the NUCFRAG code (ref. 13).

To reduce computational time for obtaining energy-dependent fragmentation cross sections, a

table of c_jk (E) values was generated for use in each calculational step. The table is made up of
seven discrete energy points (E = 25, 75, 150, 300, 600, 1200, and 2400 MeV) and covers all the

possible j and k ions for j < k. The cross section at each range (energy) grid is then obtained

by linear interpolation (or extrapolation) from these discrete points. Since Rudstam's formula

gives incorrect results at low-energy values for some heavier ions, ajk (E) for E < 150 MeV is

assumed to bc equal to a_ (150 MeV) for all values of j < k and k = 20 to 28. These results
are reflected in figures 1 and 2. The overall computational time for radiation transport is then

about the same as for the previous calculation when the energy-independent version of HZETRN

(ref. 5) was used.

In the past. GCR (galactic cosmic rays) transport calculations assuming energy-independent

cross sections were made by using the asymptotic value of fragmentation cross section at high

energies. For comparison purposes, the energy-independent calculations presented herein are

obtained by using the newly implemented energy-dependent code with constant cross sections set
at the value corresponding Lo 1 GeV/amu. Results of the GCR transport at the solar minimum

using the CREME environment through various thicknesses of liquid hydrogen and water are
obtained for energy-dependent and energy-independent calculations. Although the total doses

and fluxes do not differ appreciably between these two separate calculations, the differences in

energy or LET (linear energy transfer) spectra might alter some biological endpoints significantly.

Some detailed spectra are examined in this section.

4



Individual energyspectraof ion flux _pfor Z = 27, 25, and 19 are shown, respectively, in

figures 3 to 5 at various depths of liquid hydrogen. Production of cobalt mainly came from

fragmentation of nickel, since the latter is more abundant than the former. The larger cross
section at lower energy for j = 27 and k = 28 (fig. 1) explains the increase of flux ¢ with depth

(for energy-dependent calculation) below 1 GeV/amu over the energy-independent calculation
and the slight decrease above 1 GeV/amu, as seen in figure 3. Figure 4 shows a similar trend for

manganese from the combined effect of nickel and iron cross sections (figs. 1 and 2 for j = 25).

The decrease in cross section for j = 19 and k = 26 at lower energy (fig. 2) explains the reverse

trend shown in figure 5. When water is used as the target material, the results are similar

but not as pronounced (fig. 6) as for liquid hydrogen. This will be generally true, but the

energy dependence of HZE fragmentation on nuclear targets is poorly known and may not be
represented well by NUCFRAG.

Action cross sections of several biological endpoints increase at least three orders of magnitude

from the lowest LET to 103 keV/pm and above (e.g., the action cross section of the Chinese

hamster cell survival curve shown in fig. 3 of ref. 14 and the action cross section of Caenorhabditis

elegans mutation in fig. 5 of ref. 15). This severe increase, however, may not be necessarily

neutralized by the lower flux in the high LET region. Thus, differences in LET spectra calculated

with energy-dependent and energy-independent cross sections must be considered. Figure 7
reveals the importance of energy-dependent calculation; the ratio of doses and fluxes between

the two calculations increases sharply at 102 keV/pm and above. At 5 g/cm 2 of liquid hydrogen,
the curve indicates a difference of more than 40 percent at 103 keV/#m.

Concluding Remarks

A fully energy-dependent version of galactic cosmic-ray transport code is developed by

implementing to the existing code a newly derived stepping formalism for heavy ions. Test

runs made for a liquid hydrogen shield and a water shield indicate no appreciable change in

total fluxes, total doses, or computing time from runs that would have been made with the

existing code. Differences in high LET (linear energy transfer) spectra are noted, however,

because of the large variation in cross sections at the low-energy region. The LET components

above 100 keV/pm are increased substantially and may increase the biological risk for the heavy
ions in the galactic cosmic-ray environment.

NASA Langley Research Center

Hampton, VA 23681-0001

October 5, 1992
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Figure 1. Energy-dependent fragmentation cross section ajk (production of ion j in collision by

ion k) of nickel on hydrogen target in producing cobalt and manganese.
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Figure 2. Energy-dependent fragmentation cross section ajk (production of ion j in collision by
ion k) of iron on hydrogen target in producing manganese and potassium.
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between energy-dependent and energy-independent calculations at various depths of liquid
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